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ABSTRACT

A simplifiedversion of the shock expansiontheory is
employed to estimate the unsteady aerodynamicload-
ing on aplanar surface. Expressions for oscillatory
aerodynamic coefficients are developed for the case

of a three-degree-of-freedom airfoil section,
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SYMBOLS

Local semichord

Reference semichord

Vertical deflection of the leading edge
Reduced frequency

Free stream Mach number
Aerodynamic pressure on surface
Free stream pressure

Net aerodynamic preasufe on airfoil
Dynamic pressure

Wing semispan

Time

Free stream velocity

Vertical deflection of airfoil
Chordwise coordinate

Location of control surface hinge line

Rotation of airfoil chord line relative to the free-stream

direction.

Rotation of control surface relative to the airfoil chord line

Flow deflection angle
Time-dependent flow deflection angle

Steady flow deflection anglé
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SYMBOLS (Continued)

Free-stream density
Shock wave angle

Circular frequency

Conditions immediately downstream of shock wave at x = x,
Conditions immediately upstream of shock wave at x = x,
Conditions on the lower surface of airfoil

Conditions at the leading edge

Conditions on the upper surface of airfoil
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I. INTRODUCTION

The two-dimensional shock expansion theory has been employed to
estimate the steady airloads on slender airfoils traveling at hypersonic
speeds (see, for example, Ref. 1). An unsteady version of this theory has
also been proposed for the determination of transient and oscillatory airloads,
on slender airfoils, in the hypersonic regime.

The unsteady theory may be developed from the hypersonic small dis-
turbance equations for unsteady flows (see Appendix A) or, if physical
arguments are employed, directly from the results of the steady flow theory.
The resulting formulae are rather complicated, but they may be simplified
when the time-dependent disturbances are small compared with the steady

disturbances .2

The procedure developed in Ref. 2 is briefly outlined in the present
work, and expressions are developed for the pressure distribution in various
flow regimes of technical interest. These results then are employed to
determine aerodynamic coefficients for a two-dimensional airfoil oscillating
in the three degrees of freedom of plunging, pitching, and control surface
rotation. Some example calculations are carried out for a flat-plate airfoil.

The assumptions upon which the theory is based are noted in Appendix A.

The sign convention employed in this paper is as follows. The flutter
sign convention is used in the unsteady case: unsteady forces and deflections
are positive down; rotations are positive with the leading edge up. The aero-
dynamic sign convention is used in the steady case: steady forces and

deflections are positive up; rotations are positive with leading edge up.
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II. AERODYNAMIC THEORY

A simplified version of the shock expansion theory, developed in
Ref. 2, is employed to determine pressure distributions in flow regimes of
technical interest. Shock expansion flows, expansion flows, and flows
downstream of secondary shock waves are treated.

Shock Expansion Flow

Considerthe hypersonic flow over the upper surface of the configuration
shown in Fig. 1. The surface slope at the leading edge is positive; therefore,

M

ML>>1 \ -

Fig. 1. Coordinate system for slender surface
in a hypersonic flow.

the flow is compressed through an oblique shock wave. Conditions are
assumed to be such that the shock wave is attached. Assuming no appreciable
compressive turning of the flow downstream of this point, we find the approxi-

mate formula for the aerodynamic pressure on the upper surface to be

. 2y/(y-1)
plx, 1) = p ()]t + Lgt M (9 6(x, 1) - 6 (%)) Y
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where 6(x,t) is the flow deflection angle at point x on the surface at the
time t. The quantities pn(t*) and Mn(t*) denote, respectively, aerodynamic
pressure and Mach number immediately behind the leading edge shock wave,
evaluated at the time t* =t - x/U o' The flow deflection angle at the leading
edge is denoted by § . The pressure p (t*) and Mach number Mn(t*) depend
upon the flow deflection angle at the leading edge, at time t*, and the free
stream conditions. They may be evaluated from the following formulae:

+1 1 2)/2
P, = pqo + YpooMoosn 3—4— Mooan +[ 1 +( Moo5n) ] » (2a)

2,4 2
a2 (y+ 1™ ¢

® ToaZe? -6 - 0] [t - 2% + ]

, (2b)

+ 1 +1 /2
M ¢ =Yg=M_5 + [1 + (L{—Mwsn) ] : , (2¢)
where ¢ denotes the angle that the leading edge shock wave makes with the

free-stream direction. These expressions are the approximate form of the

oblique shock wave relations, and they are developed under the assumption
that

. M2 >>2

. . 2
sin Enz. 6n ) sin g ¢ ’ Gn << 1 &

Specializing to the case of small unsteady motions, we can simplify
Eq. (1) further. As in Ref. 2, the flow deflection angle 5(x,t) is written

6(x,t) = 0(x) + e(x,t) , with le]<< 0|

-
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where ¢(x,t) denotes the time-dependent contribution. At the leading edge,
the flow deflection angle is

6n=0n+¢n .

The aerodynamic pressure and Mach number at the leading edge are expanded
about their respective steady values p n and Mn’ Retaining first-order terms
in these expansions gives

pa(t) =B, [1 +ne (] (32)
Mn(t) = Hn[ 1+ mcn(t)] , (3b)

where n and m are the dimensionless rates of change of pressure and Mach
number with turning angle.

The expression for n and m are obtained from the oblique shock wave
relations:

2yly + 1)M°°(Mm$)3
n= =
[MM‘J)Z -y - 1)] [(Macj)z + 1]

’ (4a)

- (v + n(mZ3)
" iuﬁ - M P + z}[(MwE)ZJr 1]

(4b)

Equations (3) are now substituted into Eq. (1) and terms of ‘2 are neglected
so that

. 2y/(y-1)-
pix,t) = in[l + ncn(t*)][l + lz-—lﬂn{A(x) + ¢(x,t) + cn(t*)[mA(x) - l]}] ,

()
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where Alx) = 8(x) - On. Equation (5) may be expanded if we assume further
that

Alx) + 2 >> | e(x, t) + ¢n(t*)[ ma(x) - 1]
v - )M

Neglecting terms of (2 and higher in this expansion, we obtain the following
relationship:

™
plx, ) = 3, [F, (0] 2/ 0¥~ [1 + e () + [;;(%]lt(x.t) + ¢ (t#) [malx) - IJ}J .

(6)
where
Filx) =14+ H—lHnA(x)
when Eq. (6) is split into time -dependent and time-independent parts
p'(x,t) and p(x), the respective contributions are seen to be
) =B [F ()20 (7a)
P'x,t) = R (x) elx,t) + R ,(x) ¢ (%) (7b)
where
R () = yp M [F, (0] YD/ Gv-D) (7c)
- Y™,
Rz(x) = p{x){n + m [ma(x) - 1] . (7d)

-6-




The quantities Sn and M n 2T obtained from Eqs. (2) by replacing Sn
with On.

Expansion Flow

In the case that the surface slope at the leading edge is negative, an
expansion immediately takes place. Assuming no appreciable compressive
turning of the flow downstream of the leading edge, we find that the approxi-
mate formula for the aerodynamic pressure on the upper surface is

2y/(y-1)
0] (8)

plx, t) - pw[l + l—i—leG(x,

The flow deflection angle is written as
5(x,t) = 8(x) + €(x,t) . with |e|<<]8]

and it is assumed that
-1 -1
1+ L—z M_8(x) >> |Lz-Mme(x, t)

Equation (8) is expanded and terms of order ‘2 and higher neglected so that

- YyM__e(x, t)
plx.t) = p_[ 1"2(x)]z””Y n [l + —f‘%m—— , (9

where

Fylx) = 1+ i-i—leO(x)

7~



Equation (9) may be split into time -dependent and time -independent parts
p'(x,t) and p(x), respectively, where

) = p [F, )2/ 0D (108)
P'(x,t) = R,(x) elx,t) (10b)

and where
233 = yp Mo [F,00] (D (-1 (1

Downstream Flows

Modification of the previous analysis is necessary if the unsteady aero-
dynamic pressures downstream of a second shock wave are required. Such
a situation arises, for example, in the determination of the aerodynamic
pressures on the compression side of a deflected control surface. The
difference in the analysis arises from the fact that the flow conditions
upstream of the shock wave are now unsteady.

The expression for the surface aerodynamic pressure in such a flow is
derived under the assumption that the surface downstream of the shock wave
has negligible curvature. Two types of upstream flow are considered,
namely, a shock expansion flow and an expansion flow. The analysis pro-
ceeds under the assumption of small unsteady motions, and, since the
development is similar to that of the preceding sections, only the major
results are presented.

Consider that the oblique shock wave originates from the point X, on
the upper surface. The aerodynamic pressure p c and Mach number M c
immediately behind this shock wave are given by Eqs. (2) with P’ Mw' 'R
and 6n replaced by Py Mh' L and ‘5h' respectively; where Ph and Mh



denote the aerodynamic pressure and Mach number immediately upstream
of the shock wave at x, , and where ¢, and Gh denote the shock wave angle
and flow deflection angle, respectively, both angles being mouqund from
the flow direction immediately upstream of the shock wave. The pressure
distribution farther downstream of the shock wave is determined from shock
expansion theory. These results may be simplified for the case of small
unsteady motions by expanding the various quantities about their roopoctive
steady flow values. When this procedure is carried through, the following
expression is obtained for the aerodynamic pressure on the surface down-

stream of the shock wave:

pix,t) = p(x) + p'(x,t) . (x>x)

where

plx) = Coih ’ (12a)
p'(x, t) = Y;huhc 1F3(ti) + Copl"(ti) + Y;thCo[ «x,t) - !C(tﬂ)] » (12b)
F3(tﬁ) = ‘C(tﬁ) - ‘h(tﬁ) + Khv(tﬁ) ’
and where

Co=1+% Ynhgh(x_}—luhxh +F 4) '

2 (M. 5. )2
cl=x_’£.lmhxh+(1:4.l)£n;:l‘_) tFy

1/2

Fg= [l * (Li_l)z m};‘h)z]
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The barred quantities denote steady flow values. The unsteady aerodynamic
pressure immediately upstream of the shock wave at x, is denoted by p;‘.
and the unsteady contribution to the flow deflection angle immediately down-
stream of this shock wave is denoted by €. In the above formulae both of
these quantities are evaluated at the time t’f‘ =t~ (x - xh)/U o

The quantity v is determined from the first-order expansion of the
Mach number M, about the steady flow value Vh:

M, (1) = M, [1+ w(t)]

The various terms appearing in Eq. (12) are dependent upon the flow condi-
tions upstream of the shock wave at X - If these flows are specified, then

the equations can be reduced to a more explicit form. With a view to
technical applications, two particular upstream flows are considered, namely,
a shock expansion flow and an expansion flow.

Shock Expansion Flow Upstream

In this particular case, the analysis of the first portion of Section II
can be employed to determine pl"x and v(t). Substituting these results into
Eq. (12), we find the unsteady aerodynamic pressure to be

Pl 1) = Kigelx,t) + Rge () + Ky o (1) + R oo o (x> xp)

(13)

where
.‘R4 = y'p'hMcCO , (14a)
fl!S:thﬂhCl -5{4 ’ {14b)

-10-
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w3
- -1 h
Riglx) = Co3,x) - YPh“h"x[‘ | (14c)

- .1 M [1 - malx)]
R () = CoR,(x) + Yp, M, C,B {m + 15— R . (144)

The coefficients R 6 and R 5 are evaluated immediately upstream of the
shock wave at X

The coefficients R (x) and R Z(x) are defined by Eqs. (7c) and (74),
respectively. The steady 1low aerodynamic pressure ;h and Mach number

Mh immediately upstream of the shock wave are
;h - _p-n[Fl(xl;)lZY/(Y-l) , (15a)
Mh=mn[Fl(x;)]'l : (15b)

The steady flow Mach number Mc immediately downstream of the shock wave
is determined using the appropriate form of Eq. {2b). By means of the above
equations, the unsteady aerodynamic pressure downstream of the second
shock wave can be related to the undisturbed flow conditions and the surface

geometry.

Expansion Flow Upstream

In this particular case, the unsteady aerodynamic pressure is found
to be

Pl t) = Rgelx,t) + Roe () + R o (x)q088) x> x)
(16)

-ll.
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where

Ry = BM.Co . (17a)

.‘R|9 = \'thhcl - 18 » (17b)

M T
fR!lo(x) = 5!!3(x)C0 - yl?hﬂhcl[l + li_l.r.‘z’%_:y‘.] . (17¢)

The coefficient fR'lo is evaluated immediately upstream of the shock wave at
x, and the coefficient fR's is defined by Eq. (11), The aerodynamic pressure
i;h and Mach number Mh are given as

Py = Poo[Fz("t-x)IZY/(Y-n ' (18a)
M, - Mmlr'z(x;)]'l : (18b)
-12.
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III. PRESSURE DISTRIBUTION ON AN AIRFOIL STRIP

The results of Section Il are now employed to estimate the unsteady
aerodynamic loading on a two-dimensional airfoil strip. (Such an airfoil strip
is shown in Fig. 3a.) The leading edge of the airfoil is located at x = 0, and
the control surface hinge line, at x = X Ihe va?ioul loading cases have to
be distinguished depending upon the conditions at the airfoil nose and at the
controllsurface. The four particular cases to be treated here are:

Case A onu >0 Control surface deflected down
] nt >0

Case B ) hu >0 Control surface deflected up
° nt >0

Case C Onu <0 Control surface deflected down
OM >0

Case D onu <0 Control surface deflected up
] nt >0

The additional subscripts u and 1 refer to the upper and lower surfaces
of the airfoil, respectively. Shock waves are assumed to originate only from
the leading edge and from the control surface hinge line. Expressions for the
net unsteady aerodynamic pressure acting upon the airfoil are listed for these
cases, These expressions are modified for the case of harmonic oacillations
and are simplified' in the case that the reduced frequency of oscillation is
small.

I w(x,t) denotes the unsteady lateral motion of the airfoil strip, then

w, 1 '
(u(x,t) = -cl(x,t) = -(-8;4"1;%) , (0 Sx X< 2b) .




The net unsteady aerodynamic pressure p*(x,t) is defined as

pH(x,t) = p(x,t) - pp(x.,t) .

Small Unsteady Motions

The net unsteady pressure between the leading edge and the control

surface hinge line is

t-4
gt = -G_¢,(x,t) - G € (0,t%) (0<x<x) (19)
where m=1, n= 2 for Cases Aand B; m= 11, n= 12 for Cases C and D.

The net unsteady pressure between the control surface hinge line and

the trailing edge of the airfoil is
-2: = - - - + %] - '
Po Gp‘l (x, t) Gq‘l (0,t%) Gr‘l (xh' th) Gs‘! (xh' tﬁ) '

(x.h < x <2b) (20)

where

p=3,q=4, r=5, s=6, for Case A,

10, for Case B,
p=13,q=14, r=5, s =6, for Case C,
p=15,q=12, r= 16, 8 = 17, for Case D.

p=7,q=8,r=9, 8

Explicit expressions for the coefficients Gm are given in Appendix B. The
argument xi"l indicates that the limiting function value as x -x, from above
is to be employed, and the argument x]; indicates that the limiting function

value as x -, from below is to be employed.

eld -
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Small Harmonic Motions

When the airfoil strip performs harmonic oscillations of {requency w,
the uneteady displacement may be written

w(x, t) = W(x)exp(iut) .
Therefore

(1) = ~¢y(x,t) = Tlx)explict)

where

'{(x):%-}%w ) k='wﬁb' ’

and where b denotes the semichord of the airfoil strip.

The expressions for p*(x.'t) corresponding to the case of harmonic

oscillations may be obtained directly from Eqs. (19) and (20) by direct

~ substitution for ¢ Fp

Low-Frequency Oscillations

If the reduced frequency of oscillation k is sufficiently small, the -
exponential terms of argument -ikx/b and -ik(x - x),)/b which appear in the
expressions for p*(x,t) may be approximated by power series expansions.

If terms of order k> and higher are neglected, then the expressions for the net
unsteady aerodynamic pressure are found to be

_ 2 2
2 . 6T - Gniﬁﬁm (1 +1 £) + FH00) [’ gl 'kf(é) ]} '

Poo

(0<x<x) , (21)




O
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B . G Tx) -
b G ¥x) - G,

(x, <x<2b) , (22)

where p¥(x,t) = PYexp(iuwt). The various loading cases are distinguished by
the subscripts m, n, p, q, r, s. These subscripts are assigned as before.

-16-




IV. OSCILLATORY AERODYNAMIC COEFFICIENTS

When the airfoil strip has specified degrees of freedom, it is possible

to define aerodynamic coefficienta. In the case to be considered, the airfoil

is assumed to have a rigid chord and a rigid control surface. The airfoil

motion may, therefore, be described by:
1. The vertical displacement of the leading edge,
2. The rotation of the airfoil strip a.bvout the leading edge,

3. The rotation of the control surface about the hinge line

(relative to the airfoil chord).

Considering harmonic oscillations, we obtain
w(x, t) = Wix)expliut) = [h + ax + B(x - x,) 1(x - x, )] exp(iut)

where 1(x) denotes the unit step function.

The oscillatory aerodynamic coefficients , L, L,, Ty M, M
y y a’ B a

Th’ To.' and T‘3 are defined as follows:

2.3

L=4p_u'b (Lh

o5

+ Lnn + Lpﬁ) exp(iwt) ,

2.4

M= 4900"’ b (M'h

o

+ Mna + Mpﬂ)exp(iwt) '

T= 4pmwzb4 ('rh{-} + T+ Tpﬂ)eXP(iwt) :

» (23)

p'

{24a)

(24b)

(24c)

where L, M, T denote lift, moment about the leading edge, and moment

about the hinge line, respectively, generated on an airfoil strip of unit width.

7~
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These quantities are related to the aerodynamic pressure p*(x,t) by the
following equations:

2b
L =f p* dx , (25a)
0
2b
M =f xp¥* dx ) (25b)
0
2b
T= f {x - xh)p* dx . (25¢)
*h

The oscillatory aerodynamic coefficients are determined when the appropriate
expression for p* is substituted into Eq. (25), the resulting equations inte-
grated and then identified with Eq. (24).

Tor the remainder of the analysis, it will be assumed that the reduced

frequency of oscillation of the airfoil strip is small, so that

K2« 1

The approximate expressions (21) and (22), therefore, may be employed to
determine the aerodynamic coefficients. Substituting Eq. (23) for the down-

wash in these expressions, we arrive at

p¥(x, t) = -pm[% Hl(m,n) + aHZ(m.n)]exp(iwt) , (0 <x< xh) , (26)

p¥(x,t) = -pw[% H3(p,q. r,s)+ 0H4(p.q. r,s) + BHg(p, r)]exp(iwt) ,

(xh <x <2b) .(27)

The coefficients H A are defined in Appendix B.

-18-




These expressions are now substituted into Eqs. (25) and the resulting
equations are integrated. Comparison of these results with (24) shows that

the oscillatory aerodynamic coefficients are:

L, = -u[K (m,n) + K,(p,q,7,8)] (28a)

L, = -k[Ky(m,n) + K (p,q,7.8)] (28b)

Lg = -»Ke(p,r) (28c)

M, = -p[K (m,n) + Ky(p,q,7,8)] (284)
M, = -k[Kg(m,n) + Kg(p,a,7,8)] (28e)
Mg = K o) (28f)

Ty, = -H[K7(p.q.r.s) -%Kz(p.q-r.s)] ’ (28g)
T, = w[Kymare) - R Kpiars)] (28n)
Tg = u[K ol r) - R Kglor)] (281)

where

Pw 1 . 2
M=§§DF ’ 2q,, = YM_P




TENIINEINE 76150 1 o4 T .

Table I. Oscillatory aerodynamic coefficients (Mg, = 5);
flat-plate airfoil at zero angle of attack.

1/k Real [L,] Imag.[L,] Real(L,] Imag.[L;,]  Ref. No.
0.41667 0.00147 -0.08369 =0. 03463 -0.08321 3
0 -0,08334 -0, 03472 -0,08333
0.99206 -0,0035 -0.1965 -0, 19843 -0,19557 3
0 -0.1984 -0. 19684 -0.19841
2.08333 -0.00715 -0.4214 -0. 88295 -0, 40836 3
0 -0.4167 -0. 86805 -0.41667
4.96032 -0,00826 -1.0108 -5.01927 -0.97069 3
0 -0.9921 -4, 92095 -0. 99206
14. 8810 -0.00848 -3.0370 -45, 1986 -2.9112 3
0 -2.9762 -44, 2888 -2.9762
1/k Real [M,] Imag.[M,] Real[M ] Imag.[M] Ref. No.
0.41667 0.0027 -0.08477 -0. 03448 -0.11119 3
0 -0.08333 -0. 03472 -0.11111
0.99206 -0.00347 -0.19389 -0. 19732 -0.26113 3
0 -0.19841 -0. 19684 -0, 26455
2.08333 -0.00917 -0.41947 -0. 88148 -0.54470 3
0 -0.41667 -0. 86805 -0. 55555
4,96032 -0.01093 -1.0099 -5.0177 -1,29435 3
0 -0. 99206 -4, 9210 -1,32275
14, 8810 -0.01130 -3.03667 -45, 197 -3,88152 3
0 -2.9762 -44, 289 -3.96826
[ S T
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The coefficients Km are defined in Appendix B. They may be evaluated for
given airfoil profiles. The parameters m,n,p,q,r,s identify the various

airfoil and control surface orientations.

A numerical example will be carried out to illustrate the theory. A
flat-plate airfoil will be treated. The reduced frequency of oscillation is
assumed to be small, and the low-frequency approximation is employed.

Numerical Example

Consider a two-dimensional flat-plate airfoil oscillating in two degrees
of freedom, namely, pitching and plunging. If the airfoil is at zero initial
angle of attack, then the nonlinear aerodynamic effects are absent and the
aerodynamic coefficients derived from this theory should agree closely with
those obtained from the linearized supersonic theory. 3 The results of both
theories, for Moo = 5 and for various values of k, are shown in Table I.

The agreement between the two sets of aerodynamic coefficients is very good.
The small differences that do appear arise from the quasisteady nature of
the present theory together with the low-frequency and high Mach number

approximations employed.

When the airfoil is at an initial angle of attack, the development of a
shock wave at the leading edge will affect the aerodynamic coefficients. The
magnitude of this effect is8 demonstrated by evaluating the aerodynamic
coefficients Lh' M‘h’ L, M for an oscillating flat-plate airfoil at a positive
initial angle of attack. The calculations are performed for a free-stream
Mach number of 5 and for Mmo equal to 0.5, 0.9, 1.3, and 1.7. The results
of the calculation are shown in Figs. 2a, 2b, and 2c. The importance of this
nonlinear aerodynamic effect is immediately apparent from these figures.

The effect is significant even at values of MmO as low as 0.5,

2] e
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Fig. 2a. Oscillatory aerodynamic coefficients.
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Fig. 2b, Oscillatory aerodynamic coefficients (continued),
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Oscillatory aerodynamic coefficients (continued).
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V. OSCILLATORY AERODYNAMIC INFLUENCE COEFFICIENTS

In certain instances it may be convenient to describe the motion of the
airfoil strip in terms of displacements rather than in terms of angles and
displacements. The aerodynamic lift L, leading edge moment;;M, and hinge
moment T are replaced by an equivalent system of aerodynamic forces. The
displacements {h} and equivalent aerodynamic forces {F} are related by
means of oscillatory aerodynamic influence coefficients. The matrix [Ch]
of aerodynamic influence coefficients (AICg) is defined by the equation

{F} = p_ublslc ){n} . (29)

where br is the reference semichord and s is the wing semispan. The aero-~
dynamic influence coefficients can be obtained directly from the oscillatory

aerodynamic coefficients.

Consider the equivalent force system shown in Fig. 3b. The equivalent

forces are arbitrarily placed at the quarter-chord, control surface hinge line,
and trailing edge. The airfoil strip is assumed to be of unit width, and the
aerodynamic coefficients are defined as in the preceding section. The

relationship between the matrix of AICs and the aerodynamic coefficients can

ot e st S B A

, be shown to bet
1
A (1 +b/24d) -b/d ~(b/c, )3b/2d - 1)
[c,]=(a/e)b/b)?| -b/2d b/d  -(b/c,)(3b/2d)
0 0 b/ca
L, L, Lg][a + b/ 2d) -b/2d 0
XM, M, Mg -b/d b/d 0 ,
T, T, Tp b/d -(b/d + b/c,) b/c,
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where ca denotes the control surface chord and d is the distance between
the forward and aft control points.

o)

()

Fig. 3. Original (a) and equivalent (b) force systems
and geometry for the oscillatory case.
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APPENDIX A

A Particular Solution of the Hypersonic Small Disturbance

Equations for Two-Dimensional Unsteady Flow

Consider the small transverse motions of a two-dimensional, slender,
pointed body immersed in a steady, uniform stream of a perfect gas
{see Fig. 1). The fluid is inviscid and does not conduct heat. An order of
magnitude analysis of the equations governing the disturbances introduced by

the presence of the body may be carried out under the assumption that

M>>1, 1t<<1l, Mt~ 0(1), k¥~ 0(1) , (A-1)

where T is a measure of the slope of the body surface and where M denotes
the Mach number. The parameter k* = L/UODT*, where T* is a character-
istic time associated with the time-dependent transverse motions and L is a
characteristic length in the streamwise direction, is a measure of the
unsteadiness of the flow. Introduction of the appropriate va.riables5 into the
equations of motion and neglect of the higher order terms leads to the field

equations of the hypersonic small disturbance theory:

Py + Umpx + (pv)y =0 (A-2a)

p(vt + Uoovx + vvy) + py =0 (A-2b)

St + Ume + SY =0 (A-2c)

p(t:lt + Ucnux tuu + vuy) + Py = 0 ' (A-2d)

-27-
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where S = p/pY. The pressure and density are denoted by p and p, -
respectively. The perturbation velocities along the x and y axes are u and
v. The free stream velocity is denoted by U o

The boundary condition on the body is

v(x,0,t) = Ume + Yt = UmS(x. t) , (A-3)

where Y(x,t) defines the body surface. The disturbances are assumed to
vanish far ahead of the body. The changes in the flow conditions across

shock waves are governed by the appropriate jump conditions (see Ref. 5).

Equations (A-2a), (A-2b), and (A-2c) can be solved independent of
Eq. (A-2d), and these equations, together with the appropriate boundary
conditions, constitute the reduced hypersonic problem. A steady flow
problem, equivalent to this reduced hypersonic problem, may be constructed

by means of the following transformation:

T=t-g— . (A-4a)
<
X=x ) (A-4b)
Y=y (A-4c)
The equations governing the equivalent steady problem are
U Pyt t‘é'&')?. =0 (A-5a)
Bl + 995) +By=0 . (A-5b)
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US4 9%?= o (A-5c)
where § = §/3Y;

BEY) = p(x.t) (A-6a)

PET) = p(x,t) (A-6b)

FED) = vix,t) . (A-6c)

The boundary condition on the body becomes
YXT) = U_Fo= U TED) . (A-7)

‘ Assuming that the flow processes are isentropic in shock-free regions, we

may combine Eqs. (A-5) into the following form:

[Uoo % + +3'),?§](i‘) =0 (A-8a)
[U 2 +(\7-3’)8](3>=o , (A-8b)
oo'5§ '8'.;,'

where
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Considering the upper surface of the body, we employ the following solution of
Eqs. (A-8) for a region I of isentropic flow.

F = constant along curves defined by dj: d¥ = (V + 3): Uy
G = constant throughout the region I.

This choice of solution implies that the disturbances reflected back to the

body, which arise due to the presence of curved shock waves, are negligible.

The pressure distribution in I' is, therefore,

~_ 1+ -lv-vn (A'9)
P=7, —— ,
n

where Vn. 3n’ '5.'n are the conditions at some reference point in the region I
The pressure distribution on that part of the body surface contained within
I is

~ o~ ]2Y/(Y- 1)

~p=3n[1+17’_‘ﬁns-an)

—

(A-10)

If I is the region downstream of the bow shock (assumed to be attached to the
nose) and upstream of any successive shock waves emanating from the body,
then the reference point may be taken at the nose of the body and the conditions
ﬁn’ 'En determined from oblique shock theory. The solution for such a case,

when transformed back to the x, y, t coordinate system, is

-1 2y/(y-1)
plx,t) = p, (%) {1 + Y= M_(t9)[8(x, 1) - & _(t%)]} . (A-1D)
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The quantities pn(t*). Mn(t*), 6n(t*) denote the aerodynamic pressure,
Mach number, and flow deflection angle at the nose, respectively, evaluated
at the time t*¥ =t - x/Um. In the case that there is no shock wave at the
nose, Eq. (A-11) simplifies, and

2y/(y-1)
t)]

plx. t) = pm‘l + li-l M_ b(x, X (A-12)

The solution (A-11) may be considered as the unsteady version of the shock
expansion formula for the case of two-dimensional hypersonic flows over
slender, pointed bodies a small angles of attack. To recapitulate briefly,

this result was developed under the assumptions that
1. The fluid is a perfect gas,

2. The effects of fluid viscosity and thermal conductivity are

negligible,

3. The flow is such that
M> 1, 1<< L, MT ~ 0(1), k¥ ~ 0(1) ,

4. The fluid processes in shock-free regions are isentropic,

5. Disturbances reflected back to the body are negligible.

-3l
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APPENDIX B
Definition of Coefficients

Pressure Distribution on an Airfoil Strip

The coefficients G appearing in Eqgs. (19) through (22) are defined
as follows:

PC3 =% 8y
PuSe %+
PG5 =%gy
Pl =Ry
PGy =Rig + Ry,
P Gg =%l +R,, .
pooG9 = \iSu !
pc::oc"'lo = g“6\1 ’

Pl =Rl tRy,
- !
Peli2 =Ry
- i |
Pply3 = Ri3 * Ry

- @l
PC14= 9y

- |
Pl 5= Ry + Ry

<33-
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Pol16=%gy -
pooGl'l =R 10u

The additional subscripts u and £ indicate that quantities are to be evaluated
on the upper and lower surfaces, respectively.

The coefficients Hm appearing in Eqs. (26) and (27) are defined as
follows:

H (m,n) =ik G_ +(ik+k* )G,
. X . X kz x 2
Hz(m. n) = (l + lk B)Gm +[l - lk E - —Z-(B) ]Gn ,
2 2 x -
H3(P'Q» r,s) = ik Gp +(ik +-kz— g)Gq +(ik +l-}- 1—"&)(61. + Gs) ’
_ 1 X ik X kZ x Z]
H4(P. q,r, 3) = (l + ik B)Gp + [l -1 'B - -Z-(B) Gq
' 2
y 2 2 2
o) (& 2 5@ e o0

2
X - 2
k Hs(p,r)=(1+ik _B_xh)cp+cr [1 + ik -xg--li-(-xs*l) +§(k2 .xé-‘-' )

506 ]

1y e e R PP
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Oscillatory Aerodynamic Coefficients

The coefficients Km appearing in Eqs. (28) are defined as follows:

*n
bKl(m, n) =/ Hl(mp n)dx ]
0

2b
bK,(p.q, 7, 8) = / Hy(p,q. 1, s)dx ,
*n

*h
bK3(m, n) = / Hz(m, n)dx ,
0

2b
bK4(p, q,r,s) =/ H4(p, q, r, s)dx ,
*h
2b
bK,(p. 7) = _[ Hlp. 1)dx
*h
2 *h
b Kb(m.n) =f le(m,n)dx ,
0

2 2b
b K7(p,q, r,s) =/ st(p.q, r, s)dx
x, :

2 *h
b Ks(m,n) =/ xHZ(m, n)dx ,
0

2 2b
b K9(P.q. r,s) =/ xH4(p, q, r,s)dx ,
*h

2 2b
b Klo(p, r)= st(p, r)dx
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